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1. INTRODUCTION

This report describes three finite difference methods and a computer
program for a boundary value problem which models the density of electrons
in the ionosphere. Let the variables H and T represent the altitude (height)
and time, respectively; let N = N(H,T) represent the electron density in the'
ionosphere. Then Fhis boundary value problem can be expressed in terms of

the parabolic differential equation

2

N 9 0

—?R = a(H,T)'a—I; + b(H,T)-gg + [c(H,T) + d(H,T,N)]-N + q(H,T) , (1:1)
H

*
where 0 <H<H and T> 0, together with the following boundary conditions:

(a) N(,T) =0 for T> 0 ; (1.12)
ON
(b) a + KN =0 at H =H* for T> O ; (1.1b)

(c) N(H,0) = gi(H) for 0 < H'% g* , where g5 is a known function of H

and i =1 or 2, (1.1c)

For the special case to be considered in this report, the differential equa-

tion (1.1) can be simplified to

2 .
N N
= At + bl)gy + (DN + qCi,T) (1.2)
oH

We shall be interested in numerical solutions of this boundary value
problem for the values of T restricted to O < T < T*, where T* is some time
constant (typically, T* = 24 hours).

Next we shall briefly outline the contents of this report. Section 2



discusses a normalization of the independent variables, H and T, and then
formally restates the boundary value problem (1.la) - (1.2) in terms of the
transformed variables. Section 3 begins with an explanation of the notation
and other concepts used in the formulation of the finite difference equations;
then it briefly mentions some theoretical aspects, such as convergence, of
the three finite difference methods to be introduced in Sections 4, 5, and

6. Appendices A, B, C, and D describe and illustrate the IBM 7094 computer
program. Appendix A gives the expressions needed for the computation of

the coefficients of the differential equation and of the boundary conditions.




2. NORMALIZATION OF INDEPENDENT VARIABLES

For positive constants H¥ and T*, set

r . (2.1)

and t T+

I}

ml:
*

Since 0 < H < H¥ and T > 0, we have 0 < h <land 0<t (<1if T < T*). The
partial derivatives in the equation (1.1) or (1.2) can now be expressed in

terms of the normalized independent variables, h and t, as follows:

ON SN dn B ON 1
PR= Dh a8 - DA EHF ’ (2.2)
ﬂ_ a[aN] _ 8[8N l_] dh 82N 1 (2.3)
og2  OH OH 9h'Bh  HF' T dH mZ w2 )
and
ON ON dt oN 1
TF % 9T B T TR (2.4)

Consequently, the boundary value problem will now formally be written in

the form
oN 82N ON
3t = A(‘n)’ah—z + Blh)g + ERIN + Q(h,t) , (2.5)

where 0 < h < 1 and t > 0, with the boundary conditions:

(a) N(O,t) =0 ; (2.5a)
OoN 1
(b) E‘LEﬁI'N:O at h =1 for t> 0 ; ; (2.5b)

(c) N(h,0) = Gi(h) for 0 <

A
=3
nA

1 , where Gi is a given function (2.5¢)

of h and i =1 or 2.



From now on when referring to the boundary value problem we shall have
in mind the system described by the equations (2.5) through (2.5¢). Expres-
sions for computing the coefficients that appear iﬁ this system are given in
APPENDIX A. The same appendix also contains information on the dimensional

units used.




3. FINITE DIFFERENCE METHODS

Consider the normalized independent variables h and t. Let L be a posi-
tive integer (to be provided as an input parameter). Introduce a rectangular
grid over the region R,

t>0 and O , (3.1)

AN
=
nA
-

in the ht-plane by subdividing R into rectangles of sides

Ah = and At .

[l L

Here the time step At is a positive real number and an input quantity. Then

the coordinates (h,t) of a representative grid point Pi n are
H

h=i°Ah, 1=0, 1, 2, o0 , L (3.2)
and
t=n.At, n=0,1, 2, ..., (3.3)
The coordinates of Pi n often will be written (hi’ tn).
)

In general, we shall use the subscripts (i,n) for referring to the value

at Pi n of any quantity which is a function of h and t. Thus we shall write
J

N. for N(h,, t ), the value at P, of the exact (analytic) solution of our
i,n i n i,n

boundary value problem. To cite another example, Ai will denote the value at
Pi n of the coefficient A(h) of the partial differential equation; in the
)

present case, the second subscript, n, is missing because A is independent

of t.
Let the numbers Wi n represent the exact solution of any one of the three
)

finite difference schemes (backward difference, central difference, or Crank-

Nicolson method). Here we use the adjective "'exact" because as is well known



a numerical solution obtained on a digital computer will normally contain
round-off error and thus will differ from the numbers Wi,n'

The finite difference equations for the three approximation methods used
by us are derived in the ensuing sections of this report. At this point one

should note only the following.

1. Each of the three finite difference methods leads to a system
= UW.) (3.4)

of linear equations, where M is a tridiagonal matrix. In the equation (3.4),

Wn represents the column vector consisting of the numbers wi,n(i =1, 2, ...,
L). Our computer program solves this system of equations by using a well
known version of Guassian elimination method specially adapted to tridi~
agonal matrices (see, for example, the reference (2], p. 104). If further
investigation of the computational results indicated a need of different
techniques to solve the resulting system of linear equations, our computer
program has been so. designed that any such method (an iterative technique,
for example) could easily replace the present Gaussian elimination procedure.
We may also mention here that the program uses double precision floating
point arithmetic. On the IBM 7094, this gives floating point numbers with
the mantissas 54 bits long.

2. No theoretical treatment of the stability, compatability (also
called consistency by some authors), and convergence properties of the finite
difference schemes used by us has been included in this report. These

problems are presently under investigation and will be summarized in a forth-

coming paper. For the time being the reader may refer to any of the four




references listed at the end of this report: they treat these theoretical

questions for similar (but not exactly our) boundary value problems.



4, THE BACKWARD DIFFERENCE METHOD

The backward (implicit) difference analog of (2.5) is

- — w.
¥ina " Min A [wi+1,n+1 Wiona ? i-1,n41,
t =84 P)

A (sh)

Yivl,na ~ wi—l,n+1]

E W . 4.1
+ Byl 2(A0) FE W na Y (4.1)
] 2
Write r = At/(ph)~. Then
Lh
_[(At)qi,n+1 + wi,n] - r[Ai 2 Bi] Wi-—l,n+1
+{-2rA + (AtY E, - 1] W + r[A, + QEVB 1w
i i i,n+l i 2 i i+l,n+l
(4.2)
Thus for n> 0 and for i =1,2,...,L-1 we can write
= 4.3
Pi Wictnel P ® Y0 PS5 Y0 na T Vi e (4.3)
where due to the boundary conditions at h = 0 we can set
P. =0 ; (4.4a)

the other coefficients for i < L - 1 can be written by comparing (4.2) with

(4.3):

P =r[A -5 B] fori=23,...,L-1; (4.4b)

R, =[-2r A, + (At) E; - 1] for i =1,2,...,L-1 ; (4.4c)



s, =r(A, +5 B] fori =1,2...,I-1; (4.4d)

and

i,nel = _[cat)'Qi,n+1 + wi’n] for i =1,2,,..,L-1 . (4.4e)

Obtain the coefficients of the equation

P + R

W = .
L wL—l,n+1 L L,n+l UL,n+1 (4.8)

from the boundary condition

2
at h = 1. The central difference representation with an accuracy of 0(h ) of

this boundary condition at t g is

.

-w
wL+l,n+l L~1,n+l 1

v =
2(A0) T, L,n4l
or
h) o
= - = w . .
wL+1,n+1 H1 WL,n+1 * L-1,n+1 (4.6)

On the other hand, the backward difference equation (4.2) for i‘= L is

-[ (at) QL’n+1 + wL,n] =r[A -

+[—2rAL + (At) EL - 1] w + r[A += B_]

L,n+1 L T2 Bl YL na
(4.7)

ing W in (4.7 ight-hand side of (4.6
Replacing WL,+1,n+1 in (4.7) by the right hap side of ( ) we get
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Dh
- W = - £
[ Q pyq + Wy o) = 7LA, = B ¥ie1,ne *
- £h _4tn
s{-2ra + (06) By = 11 W o+ rlA + T BT H, Woons1 * ¥o1,nal
Hence
- 4.8
PL ¥t net R Y ne T Ve 0 (4.8)
where :
b, = oeA (4.92)
r(Ah) r(Ah)2
RL = -21‘AL + (At)EL -1 - —i—— AL - _EI—'I_— BL
1 1
Lh 1
= —rAL[2 + ﬁ—] + (At)[EL - BL] 1 ; (4.9b)
1 1
U = -[(At) Q + w1 . (4.9¢)

L,n+l L,n+1 L,n
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5. A CENTRAL DIFFERENCE METHOD BASED ON THREE TIME LEVELS

Since the coefficients A, B, and E of the differential equation (2.5) are
independent of t and N, a central difference representation of (2.5) can be

written in the form

g

i 2
== w W,
By wi,n 3 Ay ( i,nel T 'i,n t wi,n—l) *

B.
i
— " ; o N 5,
3 M Yt Wia? TE Wi a P Qg 6.1)
Here
. - O2W, L+ W, .
Aiwi LT 133 1-1,3 G.1a)
»J (&h)
w - W
i+l,j i-1,3
W, . = 2 2 5.1b
‘4,5 2 , (5.1b)
and
w - W
i, j+1 i,j-1
w., . = 2 2 5.1c
A 2(At) (5.1c)
%y oW ow ,
are the finite difference approximations to —j5 == . and — respectively
Bh‘z" oh ot ’ ’
at (h,t) = (hi,tj). By expanding (5.1) in terms of these approximations and
by, as before,writing r = oﬁt)z,, we get
' (Lh)
- = ) - 2w,
3(wi,n+1 wi,n—l) 2Air[(wi+1,n+1 i,n+l * wi—l,n+1) +

- W, - 2w, L o
* (wi+1,n 2wi,n * wi-l,n) + ( i+l,n-1 i;n-1 * 1—l,n-1)] *
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+B_t[(w - W ) + (W -w )y +
i Mh 141,041 i-1,n+1 i+l,n i-1,n

+ (W ,n—l)] + 6QA[EW, +Q ]

: - W,
i+l,n-1 i-1 s i,n

or

r[2Ai - (Ah)Bi] w + [-4rAi - 3] w, +

i-1,n+1 i,n+l

+ r[2A; + (0h)B, ] W = - (28, v)[ (W,

i+l,n * wi+1,n—1) -

i+l,n+l

T2 W)t gt wi-l,n—l)] -

) - (W + W )] -

At
(Bi Ah)[(wi+l,n * wi+1,n—1 i-1l,n i-1,n-1

+Q )] - 3w . (5.2)

,n i,n-1

[6(at) (B, wi,n

Thus we obtain L-1 equations
= 5.3
PWi ne RYna * 8% 00 T Yina (5.3)

for n> 1 and i =1,2,...,L-1. Since W0 = 0,due to the boundary condition

at h = 0, we can set

P, =0; (5.4a)

the other coefficients for i < L-1 are:

P, =r[2A - (Mh)B,], i=23,...,L-1 ; (5.4b)




13

=]
Il

—[4rAi + 3], i=1,2,...,Lr1 ; ' (5.4c)

4]
1]

r[2Ai + (Ah)Bi] s i=1,2...,L-1 ; : (5.4d)

. ] . (Ah-) < ] ( . 1 . 1 1 )

+ [24, +_(Ah)Bi](Wi_1’n + wi_l,n_l) - 4Ai(wi,n + (5.4e)

* Wi,n~1)}' - 6(At)[Eiwi,n + Qi,n] - 3wi,n—l ?

Remark: to evaluate Ul,n+1’ set WO,n-l = wO,n =0,

In order to obtain the coefficients of the Lth equation,

(5.5)4

P Wener PRL Yo TV
use the central difference representation
w - W . .
L+1, 3 L-1,j W -0
2(h) My L,J
of the boundary condition at h = hL = 1; from this difference equation we get
Ah
=-=—W .+ WV .. 5.6
wL+1,_j Hl L,J L-1,] ( )

Next let i =1, in (56.2) and replace the W by the right-hand side of (5.6)

L+l,n

with j = n - 1,n or n + 1 as required. Thus,



r(2a - (Ah)BL] erl,n+1 + [—4rAL - 3] wL,n+1 *
Ah
+ r[2A + (&n)B_ 1( ) WL,n+1 + wL—l,n+1) =

- r{[ZAL + (n)B ][~ Bew +w ) H(W

H, ' L,n L,n-1 I-1,n " WL'l’n'l

1

- - 4 -
+ (28, - @B I o+ Wiy et ALMp,n * wL,n—I):}

SOOIEW, | + QL,n] - BW 1

It follows that

PL = 4rAL )
(A¢)BL
RL=-[2rAL(2 +-I_T-) +—H—-+3] s
1 1
and that
Hh

= - a - R

UL,n+1 r{ AL(wL-l,n * wL—l,n—l) [ZAL(2 * Hl) *

-6t EW, o+ Q 1-3W

14

)]+

(5.7a)

(5.7b)

(5.7¢)
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6. THE CRANK-NICOLSON METHOD

In the present case, the finite difference representation of the differ-

ential equation (2.5) is

wi n+l wi n A1 2
2 2— = = +
AT 7 % Mina TVt
B, E.
5 AW F WY )
2 Ah i,n+l i,n 2 "i,n+l i,n

2— (6.1)

2
where the operators Ah and Ah are defined by (5.1a) and (5.1b), respectively.

Then writing r = ——éEE— , we have
(&h)
20 ne1 " W nd AT e T P na P W) Y
* (wi+1,n - 2wi,n * wi-l,n)] Zl(ﬁi)[mg+l,n+1:_ Wi—l,n+1) *
P T Mo B g Y ) Qg v
which leads to
i,n+1 - wi,n] = Air[(wi+1,n+1 * wi+1,n) * (Wi—l,n+1 * Wi—l,n) -
~20W, W, )] +——(A">[< W) -

i,n+l i,n i+l; n+l i+l,n
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- w E
(wi—l,n+1 * i-l,n)] +[.i(wi),n+l * wi n) M «%7n+1 * Qi,n)']At )

3 .

Therefore,
By At
- ==Y 1w -(2 2 ; N
[rA; - 7GR W q + 72+ 204 FOEE W, gt
B
i At
* [rAi * 5_(Ah)] i+l,n+l
Bicﬁt
= - - == 2 - 2
{}rAi 5 Ah)]wi_l’n + [ rA, + Ain]wi’n +
By At
N =hd 6.2
+ [ra; + 3 (Ah)]wi+1,n + (Qi,n+1 + Qi,n)At} . (6.2)
Hence for n> 0 and i = 1,2,...,L-1 we obtain L-1 equations
w = . 6.3
PWi1,nel ¥ BiY na *Si%i,na T Yina (6.3)

Due to the boundary condition at h = 0, we have W0 = 0 for all j. Thus we

3d
can set

P = 0. (6.4a)

Then the other coefficients for i S_L—l are as follows:

Lh .
P, = r[A, - (E—)Bi], i=2,3,...,L-1; (6.4Db)
R, = AtE - 2(1 + Ar), i=1,2,...,L°1 (6.4c)
Lh .
8, = rlA; + 65—)31], i=1,2,...,L~1 ; (6.4d)

and
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h )
Ui ner =7 Tl (QZ_)Bi]wi—lsn +lAtEy + 201 - rAD W, o+
h
—)B
+ r[Ai * éé) i]wi+1,n + (Qi,n+l Ql, we
i=1,2,...,L-1 . (6.4e)
: 2 w = °
Remark: to evaluate Ul,n+1’ use 0,n 0

th
In order to obtain the coefficients of the L =~ equation,

. R - = 6.
P My ner YR Y ne T U ne (6.5)

use the central difference representation

Yo, 3 ” Vi1 R _ o
2(nh) 2H1 L,j ~
of the boundary condition at h = hL = 1; this difference equation implies -
h
= - (= W . e .6
WLt 3 (frl)wL,j T, . )
Next set i = L in (6.2) and replace the WL+1 j by the right-hand side of (6.6),
3
where j = n,n+l. This gives us
L t - .
At -2 ‘E W
[ra, - 3 Cih -1, nst] ¥ 72+ ALY w ARE W
t
+ [rap + 2_(2h (Al Yne * wL—l,n+1] =
L t
= = - 2(1 - rA tE
{ 5 (2h)]W + [2( TAL) + A L]WL,n +

+ AL ?‘2 (ﬁ Won " Wienl * @ py * QL,n)At}
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It follows that

PL = erL ) (6.73.)
| Ah BL At ,Ah
= -2 - tE_- 2y - 2=2) (=
R [ 2rAL +ALE rAL(Hl) 5 ( )(Hl)]
LHh BL At
- - = (== - AtE
= [rAL(2 + Hl) + 5 (Hl) +2-A L] ’ (6.7b)

and that

' ' Ah
= - 2 - +AtE_ - =y -
UL’n+1 {[ rAL‘]wL_l’n +[2 2rA, OLE rAL(Hl)

B
L At ,Ah
- _Z—(E) (H_l) ]WL,n + (QL, n+l + QL,n)At:}
OHh BL(At
= —{[ 2rAL]WL_1’ + [-rAL(Z + -H—l) 2—' H—l) +

t
+2 + AtEL]wL,n + (QL,n+1 + QL’n)A} . (6.7¢)
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APPENDIX A: COEFFICIENTS OF THE DIFFERENTIAL EQUATION AND OF THE BOUNDARY
CONDITIONS IN TERMS OF THE INPUT PARAMETERS

A,1 The Input Parameters and their Dimensional Units

In order to specify the dimensions of the input parameters and the
. N A .
coefficients of the boundary value problem, let )\ and T denote the units
of height (length) and time, respectively. The normalized dimensional units
N
for h and t used by the program internally are 1) = 1,000 kilometers and
A
1T = 24 hours, respectively. The units of h and t to be used for external

input are described in APPENDIX B.

The following parameters must be provided as a part of input information:

A
Hy in [\] ,
H1 in r&] ,
b, in (XA ,

A3 A-1
Q, in [N .90,

23

N, inEmumber of electrons /\° ] ,

N S |
B, inlT 71 ,
F = 1or 2
angle ¢ in radians ,

angle § in radians ,

1.

LA
T in [T

A.2 Coefficients of the Differential Equation

First let us define the following quantities:

h-HO
Dl(h) = DO . EXP[—H]-:—] in [\ /7] 5
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-F(h—HO)

—]
H1

in [?rl]

Bh) = 60 - EXP[

H

cos X = (sin ¢ - sin §) + (cos ¢ + cos § * cos t')

where t' is in radians and for the unit of time in ¢Y= 24 hours), t' =k - t

. A
with k = 27 radians/T.

Then, in our special case, the coefficients A, B, E, and Q of the

differential equation

82N
2

+ B(t,h) %g + E(t,h, )N + Q(h,t)
oh

-Ft = A(t,h)

are defined by

Ala,t) = A() = D () in [R2/7
3D, (h)
B@J):B@):T%—— m[%@],
1
D. (h) _
C(h,t) =cm)=—ﬁm)+—L—3 in[?l] ,
2(H,)
1
D(h,t,N) =0 ,
and so’
D, (h)
E(h,t,N) = C(h,t) +D(h,t,N) =- B(h) + ——
2(H))

is a function of h only. Q(h,t), the only coefficient dependent both on h

t, is of the form

h—HO h-HO - A3 A
Q(h,t) = QO- EXP 11 - - (sec X)EXP|[- _ﬁ_—] in [\ Y/T] when |X|< /2
1 1
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=0 when |x|> a2

A.3 The Boundary Conditions

The boundary condition N(h,0) = Gi’ where i =1 or 2, at t = 0 and for

0 E h E 1 is either

1 h—How -2(h—H0) .
Gl(h) = N0 . EXP{-é(l - T) - EXP[-——;{——]}
1 1
or else
0 when 0 < h S H0
h) =
Gz( )
h-H, 2(h~-H.)
o - ——— -— - ———————— < < °
Ny LEXP[ 2H1 )] - EXP| i 1t when Hy < h< 1

A
Both Gi(h) represent the number of e1ectrons/\3, At the input time one should
specify which Gi(i = 1 or 2) will be used,

For t > 0, the boundary condition at h =1 is

oN 1
Bt GrN =0
1

where Hl is an input parameter already mentioned in the present appendix.
The boundary conditjon at h = 0 for t > 0 is

N(0,t) = O .
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APPENDIX B: USAGE OF THE COMPUTER PROGRAM

B.1 Computer Program

First let us review some basic features of the computer program for the
numerical solution of our boundary value problem which should be of interest
to its prospective user. Almost all of them have already been mentioned in
and are scattered through other parts of this report. However, in order to
make APPENDIX B relatively independent from the rest of the report, we
summarize this useful information below:

1. The program has been coded in the symbolic language (SCATRE) for the
IBM 7094 computer of the Digital Computer Laboratory of the University of
Illinois.

2, Doubie precision normalized floating point arithmetic is used inter-
nally. Themantissa of a double precision floating point number on the IBM
7094 is 54 bits long.

3. Three fiﬁite-difference methods (backward difference, central dif-
ference, and Crank-Nicolson) are incorporated in the program. The user must
indicate by an input signal which one of them he intends to use. How to
choose values for this signal is explained in the description of the input.

4. The central difference method is of experimental nature. Its final
acceptance or rejection will depend on the results of further testing and
theoretical work. This method uses three time levels and thus has to be
started by some two-times-level method which in our use happens to be the

backward difference method.
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B.2 Composition of the Input Data Deck

By a run we mean an integration (numerical solution) sweep executed from
the initial time t = O through some final value of t, say tFN' Each run may
be segmented into one or several stages. One specifies a stage, say the iEE,
by fixing a constant time step, Axi, to be used throughout it and by giving

its final (or end) time point t_ . In a run consisting of N stages, the t

Fi Fi

must be ordered such that

o<t <t _<.,.<t

Fl F2 FN

During the execution time the east stage of a run will be recognized by the
current value of the so-called exit ilgg: the value of that flag associated
with the last stage should be = 1; for any other stage, it should be = O.

A machine job will consist of one or several runs depending on for how
many runs the input data has been furnished.

Using the terminology introduced above we can now speak of the stage or
run data subdecks of a job input data deck. The composition of a typical

job input data deck is illustrated by the following diagram.
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Data subdeck for the lst run.

Data subdeck for the 2nd run.

Data subdeck for the last run.

} The end-of-job card.

Fig. B.1l: Composition of a job iaput data deck
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The "$ DATA" and the end-of-job cards are always of the same fixed for-

mat and should always be present in the data deck.

Warning: the user should become familar with the current rules of the

Digital Computer Laboratory concerning other "$" system cards that may have

to be added to or omitted from the job input data deck.

The composition of a run input data subdeck is as follows:

CARD

Run ID (title) card:

Run control card:

Card 1 of floating point numbers:
Card 2 of floating point numbers:

Card 3 of floating point numbers:

Stage (#1) card:

Stage (#2) card:

[ s LA I L I

Stage (#N) card:

Fig. B.2:

CONTENTS

an arbitrary alphanumeric message in
columns 2-72; "1" should be punched in
col, 1.

L; the integration-mode-signal; the
write-mode-signal; BCFLG ( = the
boundary condition flag).

HO; Hl; DO; BO.
$; &; T .

F, NO; QO.
t . Aty; At SWMODE (="the stage-
write-mode signal); EXFLG (= the exit

flag) = O.

; Aty At SWMODE (= the stage-
write-mode signal), EXFLG ( = the exit
flag) = O.

toys Oty Ot SWMODE (= the stage-
write-mode signal), EXFLG ( = the exit

flag) = 1.

Composition of a run input data subdeck
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The following table provides sufficiently detailed information needed to
design and punch the input data cards, 1In the event that the user is not
familiar with the definitions of the I-, E-, and H-fields as used in input
format statements, he is advised to consult the SCATRE manual issued by the

Digital Computer Laboratory of the University of Illinois.
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FIELD TYPE f;mYMBOLIC |
OF
OF INPUT
COLUMNS |ADJUST ; STORAGE INPUT QUANTITY
QUANTITY
& TYPE LOCATION
Run ID (title)sweard
01 lphanumeric| TCARD Pos. integer 1" should be punched
(14)
02-72 |Arbi- Alphanumeric TCARD + 6 hn arbitrary ID message 71 alphanu-
(71H) trary eric characters 1long (including
lanks); for example, "THE ELECTRON
ENSITY IN THE IONOSPHERE, STUDY
INO . XX .
73-80 Blank
T
Run control card (of [fixed point barameters)
01-06 Right Positive L = the no. of Ah subintervals in
(16) integer <h<1. Range: 4 < L < 256.
07-12 Right Integer MODE The flag tor determining the mode of
(16) the numerical solution.

The value 0y backward difference

method.

The value 1=p central difference

method.

The value 22 Crank-Nicolson method.
13~-18 | Right Integer WMODE he control flag for writing the in-
(16) ut data and the results of the pre-

liminary calculations.

The value O0=» the input data, hy-,

and Hj-tables written;

The value 15? in addition,; other pre-

liminary calculations
written.
Normally, the user should use the

value = O,

19-24 Right Integer BCFLG IThe control signal for the choice of
(16) boundary conditions at t = 0.
he value O%Gl(h);
he value 1= Gz(h).
25-80 Blank
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FIELD TYPE SYMBOLIC
OF INPUT NAME OF

COLUMNS | ADJUST QUANTITY STORAGE INPUT QUANTITY
& TYPE LOCATION

Cerd 1 off floating pdint numbers

01-18 Right| Fl. point HO Hy in [1,000 km].
(E18.8)

19-36 Right | Fl. point | HL Hy in [1,000 km].
(E18.8)

37-54 Right { Fl. point DOU D, in [ (1,000 km)z/hr].
(E18.8)

55-72 Right | Fl1. point| BETAOU By in [hr 17,

(E18.8)

73-80 Blank

%

Card 2 of floating pdint numbers

01-18 Right | Fl. point PHI ¢ in [radians].
(E18.8)

19-36 Right | Fl. point| DELTA 6 in [radians].
(E18.8)

37-54 Right] Fl. point TAUU T in [hr].
(E18.8)

55-80 Blank

t !
Card 3 of floating paoint numbers

01-18 Right | Fl. point F F=1.0 or = 2.0 [dimensionless].
(E18.8)
19-36 Right | Fl. point NO N_in [no. of electrons/(1,000 km?].
0
(E18.8)
-3 -1
37-54 Right Fl. point QUO QO in [(1,000 km) 3 hr ~].
(E18.8)
55-72 Blank
(E18.8)

Stage card

01-18 Right | Fl. point TFU tp in (hr].
(E18.8)
19-36 Right | Fl. point| DELTU At in [hr].
(E18.8)

37-54 Right { F1l. point| DELTWU Axw in [hr].
(E18.8) | |
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FIELD TYPE SYMBOLIC
oF INPUT | NAME OF INPUT QUANTITY
COLUMNS | ADJUST | o0 pimrny | STORAGE Q
& TYPE LOCATION
Stage card (continued)
55-78 | Blank
79 Integer SWMODE The control signal for writing the
(11) output of the stage.
The value = 0 or 15; standard out-
put;
The value > 2 =» in addition,
~ intermediate quantities
dependent on t written;
The value > 3 in addition,
~ the coefficients of the
system of linear equa-
tions written.
Normally, the user should use the
value = 0 or 1.
80 Integer EXFLG The flag for indicating the last
(I1) : stage of a run. It should be =1
for the last stage and = 0 for any
other stage.
- End-of-job card (to follow the input data subdeck of the last run
in a job)
1 lphanumerici TCARD "."  the minus sigm, should be
(1H) punched .
02-11 Rlphanumeric| TCARD + 6 [The message "END OF JOB" should be
(10H) punched.
12-80 Blank
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APPENDIX C: FLOWCHARTS

The flow charts contained in this appendix are presented in the same order
as the corresponding subprograms appear in the program. The name by which a
subprogram, including the master control, is referred to is its symbolic entry
address. For the convenience of the user, we list next the names of all sub-
programs in the order indicated above:

MCNTRL (the master control)

ERREX

TA000

IBO0O

SB00OO

EQO000, EQ100

MEOOO, ME100, ME200, ME300, ME400, ME500, ME600

PROOO, PR10O

DEOOO

WCO000

WT000, WT100, WT200

WPOOO
WX000

Each subprogram is entered from a higher level subprogram (the master con-

trol in this respect is the highest level subprogram) by using a basic linkage

of the following type:

a TSX (name of subprogram), 4

a +1 (normal exit)

There are subprograms which do not return the control to the location q + 1.
Such cases are clearly indicated.
A reference to a lower level subprogram from a higher level subprogram is

indicated by



i ¢

(name of the subprogram referred to)

brief description of the function of
the subprogram referred to

v

in the flowcharts contained in {his appendix.
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